Sensitivity Analysis of Auto-Ignition Simulation at Gas Turbine Operating Conditions

Author:

Prause Juliane1,Noll Berthold2,Aigner Manfred2,Syed Khawar3

Affiliation:

1. Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart 70569, Germany e-mail:

2. Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart 70569, Germany

3. Alstom (Switzerland) Ltd., Zentralstrasse 40, Birr 5242, Switzerland

Abstract

The demand to reduce CO2 emissions favors the use of alternative hydrogen-rich fuels, which can stem from precombustion carbon capture or power-to-gas technologies. These fuels are characterized by a higher reactivity and reduced ignition delay time compared to natural gas. Therefore, current combustor designs need to be adapted to the new requirements. Numerical modeling greatly assists the further development of such systems. The present study aims to determine how far a sophisticated computational fluid dynamics (CFD) combustion method is able to predict auto-ignition at real engine conditions. Scale-resolving computations of auto-ignition were performed at elevated pressure (15 bar) and intermediate temperatures (>1000 K). The conditions are similar to those occurring in premixing ducts of reheat combustors. A nitrogen-diluted hydrogen jet is injected perpendicularly into a stream of hot vitiated air. The scale-adaptive simulation (SAS) method as proposed by Menter and coworkers has been applied. The chemistry is captured by direct inclusion of detailed kinetics. Subgrid fluctuations of temperature and species are considered by an assumed probability density function (PDF) approach. The results are compared with appropriate experimental reference data. The focus of the present work is set on the identification of the major sources of uncertainty in the simulation of auto-ignition. Despite the very challenging operating conditions, satisfactory agreements could be obtained within experimental uncertainties.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3