Effect of Crystallographic Quality of Grain Boundaries on Both Mechanical and Electrical Properties of Electroplated Copper Thin Film Interconnections

Author:

Murata Naokazu1,Saito Naoki2,Tamakawa Kinji3,Suzuki Ken3,Miura Hideo3

Affiliation:

1. Department of Nanomechanics, Graduate School of Engineering, Tohoku University, 6-6-11-716, Aoba Aramaki, Aobaku, Sendai, Miyagi 980-8579, Japan e-mail:

2. Department of Nanomechanics, Graduate School of Engineering, Tohoku University, 6-6-11-716, Aoba Aramaki, Aobaku, Sendai, Miyagi 980-8579, Japan

3. Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, 6-6-11-716, Aoba Aramaki, Aobaku, Sendai, Miyagi 980-8579, Japan

Abstract

Effects of crystallographic quality of grain boundaries on mechanical and electrical properties were investigated experimentally. A novel method using two parameters of image quality (IQ) and confidence index (CI) values based on electron back-scattering diffraction (EBSD) analysis was proposed in order to evaluate crystallographic quality of grain boundaries. IQ value was defined as an index to evaluate crystallinity in region irradiated with electron beam. CI value determined existence of grain boundaries in the region. It was found that brittle intergranular fatigue fracture occurred in the film without annealing and the film annealed at 200 °C because network of grain boundaries with low crystallinity remained in these films. On the other hand, the film annealed at 400 °C caused only ductile transgranular fatigue fracture because grain boundaries with low crystallinity almost disappeared. From results of measurement of electrical properties, electrical resistivity of copper interconnection annealed at 400 °C with high crystallinity (2.09 × 10−8 Ωm) was low and electron migration (EM) resistance was high compared with an copper interconnection without annealing with low crystallinity (3.33 × 10−8 Ωm). It was clarified that the interconnection with high crystallinity had superior electrical properties. Thus, it was clarified that the crystallographic quality of grain boundaries has a strong correlation of mechanical and electrical reliability.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3