Natural Convection Patterns in Right-Angled Triangular Cavities with Heated Vertical Sides and Cooled Hypotenuses

Author:

Ridouane El Hassan1,Campo Antonio1,Chang Jane Y.2

Affiliation:

1. Department of Mechanical Engineering, The University of Vermont, Burlington, VT 05405

2. Department of Applied Statistics and Operation Research, Bowling Green State University, Bowling Green, OH 43403

Abstract

The present investigation deals with the numerical computation of laminar natural convection in a gamma of right-angled triangular cavities filled with air. The vertical walls are heated and the inclined walls are cooled while the upper connecting walls are insulated from the ambient air. The defining apex angle α is located at the lower vertex formed between the vertical and inclined walls. This unique kind of cavity may find application in the miniaturization of electronic packaging severely constrained by space and/or weight. The finite volume method is used to perform the computational analysis encompassing a collection of apex angles α compressed in the interval that extends from 5° to 63°. The height-based Rayleigh number, being unaffected by the apex angle α, ranges from a low 103 to a high 106. Numerical results are reported for the velocity field, the temperature field and the mean convective coefficient along the heated vertical wall. Overall, the matching between the numerically predicted temperatures and the experimental measurements of air at different elevations inside a slim cavity is of ordinary quality. For purposes of engineering design, a Nu¯H correlation equation was constructed and also a figure-of-merit ratio between the Nu¯H and the cross sectional area A of the cavity was proposed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference13 articles.

1. Departure from Natural Convection in Low Temperature Boiling Heat Transfer in Cooling Microelectronic LSI Devices;Oktay

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3