Affiliation:
1. Department of Mathematics, Naval Postgraduate School, Monterey, CA 93943
2. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Abstract
Kinematical relations are derived to account for the finite cross-sectional warping occurring in a beam undergoing large deflections and rotations due to deformation. The total rotation at any point in the beam is represented as a large global rotation of the reference triad (a frame which moves nominally with the reference cross section material points), a small rotation that is constant over the cross section and is due to shear, and a local rotation whose magnitude may be small to moderate and which varies over a given cross section. Appropriate variational principles, equilibrium equations, boundary conditions, and constitutive laws are obtained. Two versions are offered: an intrinsic theory without reference to displacements, and an explicit theory with global rotation characterized by a Rodrigues vector. Most of the formulas herein have been published, but we reproduce them here in a new concise notation and a more general context. As an example, the theory is shown to predict behavior that agrees with published theoretical and experimental results for extension and torsion of a pretwisted strip. The example also helps to clarify the role of local rotation in the kinematics.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献