Shape Optimization of the Pick-Up Tube in a Pitot-Tube Jet Pump

Author:

Meyer J.1,Daróczy L.1,Thévenin D.2

Affiliation:

1. Laboratory of Fluid Dynamics, University of Magdeburg OVGU, Magdeburg 39106, Germany e-mail:

2. Professor Laboratory of Fluid Dynamics, University of Magdeburg OVGU, Magdeburg 39106, Germany e-mail:

Abstract

At a very low specific speed (VLSS), pumps normally suffer from high disk friction losses. In order to solve this issue, it can be helpful to use a different centrifugal pump design, which is not often found in the pump industry: the Pitot-tube jet pump (PTJ pump). It shows superior performance at low specific speed due to a rather unconventional working principle, described in detail in this paper. The key design feature of the PTJ pump is the (fixed) pick-up tube. Its geometry has not varied over the last decades; it is referred to in this study as “initial” or “standard” design configuration. However, optimizing the pick-up tube might lead to a considerably higher performance. Therefore, a parameterized three-dimensional (3D) computer-aided design (CAD) model is used in this study to investigate the impact of shape deformation on pump performance with the help of computational fluid dynamics (CFD). Two CFD approaches are presented and compared for this purpose: a computationally efficient approach with limited accuracy (low-fidelity method) and a more detailed, but computationally more expensive, high-fidelity approach. Using both approaches, it is possible to obtain highly efficient PTJ pumps. As a consequence, first design rules can be derived. Finally, the optimized design has been tested for various operation points, showing that the performance is favorably impacted along the complete characteristic curve.

Publisher

ASME International

Subject

Mechanical Engineering

Reference40 articles.

1. Kurokawa, J., Matsumoto, K., Matsumoto, K., Matsui, J., and Kitahora, T., 1998, “Performances of Centrifugal Pumps of Very Low Specific Speed,” 19th IAHRSymposium on Hydraulic Machinery and Cavitation, H.Brekke, ed., World Scientific Publishing, Singapore, Vol. 1, pp. 833–842.http://hdl.handle.net/10131/3684

2. The Roto-Jet Pump: 25 Years New;World Pumps,1996

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3