Affiliation:
1. Bioengineering Laboratory, Orthopaedic Surgery, MGH/Harvard Medical School, Boston, MA 02114; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
2. Bioengineering Laboratory, Orthopaedic Surgery, MGH/Harvard Medical School, Boston, MA 02114
Abstract
It is widely recognized that the tracking of patella is strongly influenced by the geometry of the trochlear groove. Nonetheless, quantitative baseline data regarding correlation between the three-dimensional geometry of the trochlear groove and patellar tracking under in vivo weight-bearing conditions are not available. A combined magnetic resonance and dual fluoroscopic imaging technique, coupled with multivariate regression analysis, was used to quantify the relationship between trochlear groove geometry (sulcus location, bisector angle, and coronal plane angle) and in vivo patellar tracking (shift, tilt, and rotation) during weight-bearing knee flexion. The results showed that in the transverse plane, patellar shift was strongly correlated (correlation coefficient R=0.86, p<0.001) to mediolateral location of the trochlear sulcus (raw regression coefficient βraw=0.62) and the trochlear bisector angle (βraw=0.31). Similarly, patellar tilt showed a significant association with the trochlear bisector angle (R=0.45, p<0.001, and βraw=0.60). However, in the coronal plane patellar rotation was poorly correlated with its matching geometric parameter, namely, the coronal plane angle of the trochlea (R=0.26, p=0.01, βraw=0.08). The geometry of the trochlear groove in the transverse plane of the femur had significant effect on the transverse plane motion of the patella (patellar shift and tilt) under in vivo weight-bearing conditions. However, patellar rotation in the coronal plane was weakly correlated with the trochlear geometry.
Subject
Physiology (medical),Biomedical Engineering
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献