Effect of Initial Constant Acceleration on the Transition to Turbulence in Transient Circular Pipe Flow

Author:

Iguchi Manabu1,Nishihara Kazuyoshi2,Nakahata Yusuke1,Knisely Charles W.3

Affiliation:

1. Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo 060-8628, Japan

2. Graduate School of Engineering, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8630, Japan

3. Department of Mechanical Engineering, Bucknell University, Lewisburg, PA 17837

Abstract

Experimental investigation is carried out on the transition to turbulence in a transient circular pipe flow. The flow is accelerated from rest at a constant acceleration until its cross-sectional mean velocity reaches a constant value. Accordingly, the history of the flow thus generated consists of the initial stage of constant acceleration and the following stage of constant cross-sectional mean velocity. The final Reynolds number based on the constant cross-sectional mean velocity and the pipe diameter is chosen to be much greater than the transition Reynolds number of a steady pipe flow of about 3000. The transition to turbulence is judged from the output signal of the axial velocity component and its root-mean-square value measured with a hot-wire anemometer. A turbulent slug appears after the cross-sectional mean velocity of the flow reaches the predetermined constant value under every experimental condition. Turbulence production therefore is suppressed, while the flow is accelerated. The time lag for the appearance of the turbulent slug after the cross-sectional mean velocity of the flow reaches the constant value decreases with an increase in the constant acceleration value. An empirical equation is proposed for estimating the time lag. The propagation velocity of the leading edge of the turbulent slug is independent of the constant acceleration value under the present experimental conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3