Flow Induced Unstable Structure of Liquid Crystalline Polymer Solution in L-Shaped Slit Channels

Author:

Narumi Takatsune1,Fukada Jun2,Kiryu Satoru2,Toga Shinji2,Hasegawa Tomiichi1

Affiliation:

1. Faculty of Engineering, Niigata University, 2-8050 Ikarashi, Nishi Ward, Niigata 950-2181, Japan

2. Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi Ward, Niigata 950-2181, Japan

Abstract

An experimental study has been conducted on unstable structures induced in two-dimensional slit flows of liquid crystalline polymer solution. 50wt% aqueous solution of hydroxyl-propylcellulose (HPC) was utilized as a test fluid and its flow behavior in L-shaped slit channels with a cross section of 1mm height and 16mm width was measured optically. The inner corner of the L-shaped channel was rounded off in order to clarify the influence of the radius of curvature on the unstable behavior. A conversing curved channel was also tested. The flow patterns of the HPC solution in the channels were visualized with two crossed polarizers and we observed that typical wavy textures generated in the upstream of the corner almost disappeared after the corner flow. However, an unstable texture was developed again only from the inner corner in downstream flow. The fluctuation of the orientation angle and dichroism were also measured with a laser opto-rheometric system and it was found that the unstable behaviors of the HPC solution have periodic oscillatory characteristics at a typical frequency. In the inner side flow after the corner, the periodic motion became larger toward the downstream and then higher harmonic oscillations were superimposed. Larger rounding off of the inner corner suppressed the redevelopment of unstable behavior, and it is considered that the rapid regrowth of unstable behavior was caused by rapid deceleration at the corner flow. Moreover, the unstable structure was stabilized with an accelerated (elongated) region in the corner flow and the converging channel was helpful to obtain a stable structure in the downstream region.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3