Lidar Attenuation Through a Physical Model of Grass-Like Vegetation

Author:

Petty Taylor M.1,Fernandez Juan D.2,Fischell Jason N.2,De Jesús-Díaz Luis A.2

Affiliation:

1. University of North Carolina at Chapel Hill , Chapel Hill, NC 27599

2. Engineer Research and Development Center U.S. Army Corp of Engineers, , Vicksburg, MS 39180

Abstract

Abstract Off-road autonomous vehicles face a unique set of challenges compared to those designed for road use. Lane markings and road signs are unavailable, with soft soils, mud, steep slopes, and vegetation taking their place. Autonomy struggles with shrubbery, saplings, and tall grasses. It can be difficult to determine if this vegetation or what it obscures is drivable. Modeling and simulation of autonomy sensors and the environments they interact with enhances and accelerates autonomy development, but analytical models found in the literature and our in-house simulation software did not agree on how well lidar penetrates grass-like vegetation. To test our simulator against the analytical model, we constructed vegetation mock-ups that conform to the assumptions of the analytical model and measured the pass-through rate on calibrated lidar targets. Vegetation density, lidar-to-vegetation distance, and target reflectivity were varied. A random effects model was used to address the dependence introduced by repeated measures, which increased accuracy while reducing time and cost. Stem density impacted total beam return count and grass patch pass-through rate. Target reflectivity results varied by lidar unit, and three-way factor interaction was significant. Results suggest benchmarking experiments could be useful in autonomy development. Permission to publish was granted by Director, Geotechnical & Structures Laboratory.

Funder

National Science Foundation

Publisher

ASME International

Subject

General Medicine

Reference44 articles.

1. Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations;Fagnant;Trans. Res. Part A: Policy Practice,2015

2. Understanding Autonomous Vehicles: A Systematic Literature Review on Capability, Impact, Planning and Policy;Faisal;J. Trans. Land Use,2019

3. Toward Reliable Off Road Autonomous Vehicles Operating in Challenging Environments;Kelly;Inter. J. Rob. Res.,2006

4. An Overview of Lidar Imaging Systems for Autonomous Vehicles;Royo;Appl. Sci.,2019

5. Obstacle Detection in Foliage with Ladar and Radar

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3