Affiliation:
1. Chair of Measurement and Control Institute of Process Engineering, Technische Universität Berlin, Hardenbergstr. 36a, Berlin 10623, Germany
2. Chair for Aero Engines Institute of Aeronautics and Astronautics, Technische Universität Berlin, Marchstr. 12-14, Berlin 10587, Germany
Abstract
Abstract
Novel pressure gain combustion concepts invoke periodic flow disturbances in a gas turbine's last compressor stator row. This contribution presents studies of mitigation efforts on the effects of these periodic disturbances on an annular compressor stator rig. The passages were equipped with pneumatic active flow control (AFC) influencing the stator blade's suction side, and a rotating throttling disk downstream of the passages inducing periodic disturbances. For steady blowing, it is shown that with increasing actuation amplitudes cμ, the extension of a hub corner vortex deteriorating the suction side flow can be reduced, resulting in an increased static pressure rise coefficient Cp of a passage. The effects of the induced periodic disturbances could not be addressed intrinsically, by using steady blowing actuation, Considering a corrected total pressure loss coefficient ζ*, which includes the actuation effort, the stator row's efficiency decreases with higher cμ due to the increasing costs of the actuation mass flow. Therefore, a closed-loop approach is presented to address the effects of the disturbances more specifically, thus lowering the actuation cost, i.e., mass flow. For this, a repetitive model predictive control (RMPC) was applied, taking advantage of the periodic nature of the induced disturbances. The presented RMPC formulation is restricted to a binary control domain to account for the used solenoid valves' switching character. An efficient implementation of the optimization within the RMPC is presented, which ensures real-time capability. As a result, Cp increases in a similar magnitude but with a lower actuation mass flow of up to 66%, resulting in a much lower ζ* for similar values of cμ.
Funder
Deutsche Forschungsgemeinschaft
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference45 articles.
1. Flow Control Opportunities in Gas Turbine Engines,2000
2. Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows;ASME J. Turbomach.,1999
3. Shockless Explosion Combustion: An Innovative Way of Efficient Constant Volume Combustion in Gas Turbines;Combust. Sci. Technol.,2014
4. Control of Secondary Flow Structures on a Highly Loaded Compressor Cascade;Proc. Inst. Mech. Eng. Part A,2013
5. Actuators for Active and Flow Control;Annu. Rev. Fluid Mech.,2011
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献