Describing the Mechanism of Instability Suppression Using a Central Pilot Flame With Coupled Experiments and Simulations

Author:

Li Jihang1,Kwon Hyunguk1,Seksinsky Drue1,Doleiden Daniel1,O'Connor Jacqueline1,Xuan Yuan1,Akiki Michel2,Blust James2

Affiliation:

1. Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802

2. Solar Turbines Incorporated, San Diego, CA 92101

Abstract

Abstract Pilot flames are commonly used to extend combustor operability limits and suppress combustion oscillations in low-emissions gas turbines. Combustion oscillations, a coupling between heat release rate oscillations and combustor acoustics, can arise at the operability limits of low-emissions combustors where the flame is more susceptible to perturbations. While the use of pilot flames is common in land-based gas turbine combustors, the mechanism by which they suppress instability is still unclear. In this study, we consider the impact of a central jet pilot on the stability of a swirl-stabilized flame in a variable-length, single-nozzle combustor. Previously, the pilot flame was found to suppress the instability for a range of equivalence ratios and combustor lengths. We hypothesize that combustion oscillation suppression by the pilot occurs because the pilot provides hot gases to the vortex breakdown region of the flow that recirculate and improve the static, and hence dynamic, stability of the main flame. This hypothesis is based on a series of experimental results that show that pilot efficacy is a strong function of pilot equivalence ratio but not pilot flow rate, which would indicate that the temperature of the pilot products as well as the combustion intensity of the pilot flame play more of a role in oscillation stabilization than the length of the pilot flame relative to the main flame. Further, the pilot-flame efficacy increases with pilot-flame equivalence ratio until it matches the main-flame equivalence ratio; at pilot equivalence ratios greater than the main equivalence ratio, the pilot-flame efficacy does not change significantly with pilot equivalence ratio. To understand these results, we use large-eddy simulation (LES) to provide a detailed analysis of the flow in the region of the pilot flame and the transport of radical species in the region between the main flame and pilot flame. The simulation, using a flamelet/progress variable-based chemistry tabulation approach and standard eddy viscosity/diffusivity turbulence closure models, provides detailed information that is inaccessible through experimental measurements.

Funder

Department of Energy, Labor and Economic Growth

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference40 articles.

1. Lean Combustion in Gas Turbines;Dunn-Rankin,2016

2. A Review of Active Control of Combustion Instabilities;Prog. Energy Combust. Sci.,1993

3. Active Control of Combustion Instability: Theory and Practice;IEEE Control Syst. Mag.,2002

4. Combustion Instabilities: Basic Concepts;Lieuwen;Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3