Analyses of Plastic Flow Localization in Metals

Author:

Needleman A.1,Tvergaard V.2

Affiliation:

1. Division of Engineering, Brown University, Providence, RI, 02912

2. Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark

Abstract

The continuum mechanics framework for analyzing plastic flow localization is reviewed. The prediction of the localization of deformation into shear bands is sensitive to the constitutive description. The classical isotropic hardening elastic-plastic solid with a smooth yield surface and normality is very resistant to localization, but deviations from these idealizations have a strong effect. Thus, a material that forms a sharp vertex on the yield surface, as predicted by crystal plasticity, shows flow localization at quite realistic levels of strain, and even the formation of a rounded vertex on the yield surface has an important influence. Also softening induced by material damage or by the heating due to plastic dissipation have significant influence in promoting the onset of flow localization. In a practical situation one effect, such as thermal softening under high deformation rates, may be the dominant cause of localization, but often the interaction of different effects appears to be the more realistic explanation of observed flow localization. Some relevant constitutive models are reviewed and the effect of the different material models on localization predictions is illustrated. Important information on localization behavior in uniformly strained solids is obtained by a relatively simple material stability analysis, but often failure by flow localization occurs in nonuniformly strained regions, where numerical solution procedures are necessary to obtain theoretical predictions. The numerical results reviewed cover localization under dynamic as well as quasi-static loading conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the critical role of martensite hardening behavior in the paradox of local and global ductility in dual-phase steels;European Journal of Mechanics - A/Solids;2023-09

2. Sheet Metal Shearing Process: An Overview;Transactions of the Indian National Academy of Engineering;2023-08-27

3. Voids Development in Metals: Numerical Modelling;Materials;2023-07-14

4. An analysis of failure in shear versus tension;European Journal of Mechanics - A/Solids;2023-07

5. Modified GTN parameters calibration in additive manufacturing of Ti-6Al-4 V alloy: a hybrid ANN-PSO approach;The International Journal of Advanced Manufacturing Technology;2022-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3