Modeling of Radiation Heat Transfer in the Drawing of an Optical Fiber With Multilayer Structure

Author:

Chen Chunming1,Jaluria Yogesh1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903

Abstract

A numerical model is developed to study the radiative heat transfer in a furnace for optical fiber drawing with a core-cladding structure in the fiber. The focus is on the effect of the difference in composition and thus the radiation properties in the two regions on radiative transport. The zonal method is applied to calculate the radiative heat transfer within the neck-down region of the preform. The radiative heat transfer between the preform and the furnace is computed by an enclosure analysis. A parallel computational scheme for determining the direct exchange areas is also studied. The radiation model is verified by comparisons with benchmark problems. Numerical results for a pure silica preform, a GeO2-doped silica core with a pure silica cladding preform, and a pure silica core with a B2O3-doped silica cladding preform are presented. Radiation properties for these are obtained from the literatures and a three-band model is developed to represent the values. It is found that radiative heat flux on the surface of the preform is strongly affected by the differences in the absorption coefficient due to doping. However, changes of about 1% in the refractive index have only a small effect on radiative heat transfer. The basic approach is outlined in order to form the basis for simulating optical fiber drawing processes, which typically involve fibers and preforms with a core and a cladding. Furthermore, the approach can apply to estimate the multi-layer fiber drawing, which is of interest in the fabrication of specialty fibers that have been finding uses in a variety of practical applications. The model can be extended to other similar processes, which involve multiple regions with different radiation properties. The main interest in this study is on the approximate representation of radiation properties and on the modeling of the transport process.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference22 articles.

1. A Model for Unsteady Analysis of Preform Drawing;Myers;AIChE J.

2. Physical Behavior of the Neck-down Region during Furnace Drawing of Silica Fibers;Paek;J. Appl. Phys.

3. The Effects of Geometry and Temperature Variations on the Radiative Transport during Optical Fiber Drawing;Lee;J. Mater. Process. Manuf. Sci.

4. Effects of Streamwise Convergence in Radius on the Laminar Forced Convection in Axisymmetric Ducts;Lee;Numer. Heat Transfer, Part A

5. Effects of Variable Properties and Viscous Dissipation During Optical Fiber Drawing;Lee;ASME J. Heat Transfer

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3