Molecules, Mechanics, and Migration of Cells

Author:

Lauffenburger Douglas A.1

Affiliation:

1. Departments of Chemical Engineering and Cell & Structural Biology, University of Illinois at Urbana-Champaign, Urbana IL 61801

Abstract

A mechanistic model for migration of mammalian blood and tissue cells over two-dimensional substrata has been developed in order to understand effects of interactions of cell surface adhesion receptors with extracellular matrix ligands and intracellular cytoskeletal components. A central prediction of the model — that cell migration speed depends in biphasic (increasing, then decreasing) manner on the ratio of cell/substratum adhesive force to intracellular motile force — has been demonstrated consistent with experimental comparisons of smooth muscle cell migration on fibronectin and collagen, and of endothelial cell migration on fibronectin in the absence and presence of the soluble receptor-binding competitor echistatin. Further, two crucial underlying assumptions of the model have received experimental support: that there is a front vs. rear asymmetry in the physical strength of ligand-receptor-cytoskeleton linkage which can be modulated by chemical changes; and, that the physical force needed to disrupt ligand-receptor or receptor-cytoskeleton linkages varies with the chemical affinity of those linkages. Thus, this model relates biochemical and biophysical properties of molecular components involved in cell migration to a measurable feature of this behavioral function. A central concept emerging from this work is that biochemical and biophysical aspects of molecular interactions are closely related, and that alterations in one can influence the other in useful ways for modulating this, and likely other, cell functions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3