Structural Integrity Estimates of Steam Generator Tubes Containing Wear-Type Defects

Author:

Chang Yoon-Suk1,Kim Jong-Min1,Huh Nam-Su1,Kim Young-Jin1,Hwang Seong-Sik2,Kim Hong-Pyo2

Affiliation:

1. SAFE Research Center, School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746, Korea

2. Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353, Republic of Korea

Abstract

It is requested that steam generator tubes with defects exceeding 40% of wall thickness in depth should be plugged to sustain all postulated loads with appropriate margin. This critical defect size has been determined based on a concept of plastic instability, however, which is known to be too conservative for some locations and types of defects. The application of this concept may even cause premature retirement of steam generator tubes. In reality, a reliable structural integrity estimation for steam generator tubes containing a defect has received increasing attention. Although several guidelines have been developed and used for assessing defect containing tubes, most of these guidelines are focused on stress corrosion cracking or wall-thinning phenomena. Because some of steam generator tubes fail due to fretting and so on, specific integrity estimation schemes for relevant defects are required. In this paper, more than a hundred three-dimensional finite element analyses of steam generator tubes under internal pressure condition are carried out to simulate the failure behavior of steam generator tubes with specific defect configurations: elliptical wear-type, tapered wedge-type, and flat wear-type defects. After investigating the effect of key parameters such as defect depth, defect length, and wrap or tapered angle on equivalent stress across the ligament thickness, burst pressure estimation equations are proposed in relation to material strengths. Predicted burst pressures agreeded well with the corresponding experimental data, so the proposed equations can be used to assess the structural integrity of steam generator tubes with wear-type defects.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3