Impact Phenomena in a Noncontacting Mechanical Face Seal

Author:

Varney Philip1,Green Itzhak2

Affiliation:

1. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30318 e-mail:

2. Professor Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30318 e-mail:

Abstract

Noncontacting mechanical face seals are often described as unpredictable machine elements, gaining this moniker from numerous instances of premature and unexpected failure. Machine faults such as misalignment or imbalance exacerbate seal vibration, leading to undesirable and unforeseen contact between the seal faces. A hypothesis explaining the high probability of failure in noncontacting mechanical face seals is this undesired seal face contact. However, research supporting this hypothesis is heuristic and experiential and lacks the rigor provided by robust simulation incorporating contact into the seal dynamics. Here, recent developments in modeling rotor–stator rub using rough surface contact are employed to simulate impact phenomena in a flexibly mounted stator (FMS) mechanical face seal designed to operate in a noncontacting regime. Specifically, the elastoplastic Jackson–Green rough surface contact model is used to quantify the contact forces using real and measurable surface and material parameters. This method also ensures that the seal face clearance remains positive, thus allowing one to calculate fluid-film forces. The seal equations of motion are simulated to indicate several modes of contacting operation, where contact is identified using waveforms, frequency spectra, and contact force calculations. Interestingly, and for the first time, certain parameters generating contact are shown to induce aperiodic mechanical face seal vibration, which is a useful machine vibration monitoring symptom. Also for the first time, this work analytically shows a mechanism where severe contact precipitates seal failure, which was previously known only through intuition and/or experience. The utility of seal face contact diagnostics is discussed along with directions for future work.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference48 articles.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3