An Algorithm for a Near Optimal NC Path Generation in Staircase (Lase) Traversal of Convex Polygonal Surfaces

Author:

Kamarthi S. V.1,Bukkapatnam S. T. S.2,Hsieh S.3

Affiliation:

1. Department of Mechanical, Industrial, & Manufacturing Engineering, Northeastern University, 334 Snell Engineering Center, Boston, MA 02115

2. Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089

3. Lead Lean Manufacturing Deployment, Purchasing Division, Ford Lio Ho Motor Company, Ltd. (Taiwan)

Abstract

This paper presents an analytical model of the tool path for staircase traversal of convex polygonal surfaces, and an algorithm—referred to as OPTPATH—developed based on the model to find the sweep angle that gives a near optimal tool path length. The OPTPATH algorithm can be used for staircase traversal with or without (i) overlaps between successive sweep passes, and (ii) rapid traversal along edge passes. This flexibility of OPTPATH renders it applicable not only to conventional operations such as face and pocket milling, but also to other processes such as robotic deburring, rapid prototyping, and robotic spray painting. The effective tool path lengths provided by OPTPATH are compared with those given by the following two algorithms: (i) a common industrial heuristic—referred to as the IH algorithm—and (ii) an algorithm proposed by Prabhu et al. (Prabhu, P. V., Gramopadhye, A. K., and Wang, H. P., 1990, Int. J. Prod. Res., 28, No. 1, pp. 101–130) referred to as PGW algorithm. This comparison is conducted using 100 randomly generated convex polygons of different shapes and a set of seven different tool diameters. It is found that OPTPATH performs better than both the IH as well as PGW algorithms. The superiority of OPTPATH over the two algorithms becomes more pronounced for large tool diameters. [S1087-1357(00)71501-2]

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selection of optimal set of cutting tools for machining of polygonal pockets with islands;The International Journal of Advanced Manufacturing Technology;2010-09-14

2. Algorithm for Pocket Milling using Zig-zag Tool Path;Defence Science Journal;2006-04-24

3. Intelligent tool path generation for milling of free surfaces using neural networks;International Journal of Machine Tools and Manufacture;2002-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3