Pressure Losses at Moderate Reynolds Numbers in Diamond-Shaped Cylinders Arrays: Application to Microregenerators

Author:

Sochinskii A.1,Colombet D.1,Medrano Muñoz M.2,Ayela F.1,Luchier N.2

Affiliation:

1. University Grenoble Alpes, CNRS, Grenoble INP, LEGI, Grenoble 38000, France

2. University Grenoble Alpes, CEA, IRIG, DSBT, Grenoble 38000, France

Abstract

Abstract Cylinders with an elliptical, oblong, lenticular, sinus, or diamond transveral shape are very interesting geometries for the design of compact heat exchangers. This work investigates the role of the porosity and of the apex angle of diamond-shaped cylinders networks on the pressure losses, at moderate Reynolds numbers, inside microheat regenerators. The design of the geometry under test has been chosen so that the cross section of the flow remains almost constant along the path of the flow between cylinders. Experiments have been performed at 1 ⩽ Re ⩽ 30 and a porosity range 0.40<ε<0.90 for an apex angle of α=33deg. Numerical simulations have been conducted using the same Reynolds and porosity ranges but varying the apex angle 33deg ⩽ α ⩽ 90deg. Experimental measurements and dimensional analysis have shown that the friction factor can be affected by the porosity. Two-dimensional numerical simulations confirmed that the friction factor increases with the porosity but also with the apex angle. An analysis at the scale of a channel flanked by adjacent cylinders has provided an original correlation able to describe easily the evolution of the Poiseuille number and the collective effects on the drag coefficient as a function of α and ε. Such a diamond-shaped design is found to induce much lower Poiseuille numbers than those expected from conventional stacked spheres, woven wires, and circular cylinders arrays. The findings of this study can help for better understanding the optimization of low pressure drop regenerators and how to reduce associated hydraulic power.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3