Influence of Tip Clearance on the Hydrodynamic Damping Characteristics of a Hydrofoil

Author:

Zeng Yongshun1,Yao Zhifeng2,Zhang Shijie1,Wang Fujun2,Xiao Ruofu2

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

2. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, China

Abstract

Abstract Tip clearance in hydraulic machines may complicate the fluid–structure interaction (FSI) effects. In this investigation, a mode-based approach (modal work) is evaluated and employed to quantitatively predict the added mass, added stiffness, and hydrodynamic damping ratio, in relation to the first-order bending mode of a vibrating hydrofoil. The investigated relative tip clearance ranges from 0.067% to 2% of the span length. The predicted vortex shedding frequency, natural frequency, and hydrodynamic damping ratio of the hydrofoil are in good agreement with the previously published experimental results, with relative deviations within 9.92%, 6.97%, and 11.23%, respectively. Simulation results show that the added mass, added stiffness, and hydrodynamic damping ratio increase inversely as the tip clearance increases. In particular, as the relative tip clearance increases from 0.067% to 2%, the added mass in still water, the added stiffness, and hydrodynamic damping ratio at a velocity of 10 m/s decrease by 18.66%, 9.36%, and 27.99%, respectively. As the tip clearance increases, the inversely increased pressure difference between the upper and lower surfaces of the vibrating hydrofoil is the main reason for the inversely increased hydrodynamic damping ratio. This is due to the energy leakages via the tip clearance region increase as the tip clearance increases, which may cause less fluid force to resist the vibration of the hydrofoil, resulting in less negative modal work done by the fluid load on the hydrofoil.

Funder

Beijing Municipal Science and Technology Commission

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Reference30 articles.

1. Characterization of Hydrofoil Damping Due to Fluid-Structure Interaction Using Piezocomposite Actuators;Smart Mater. Struct.,2012

2. Effect of Trailing Edge Shape on Hydrodynamic Damping for a Hydrofoil;J. Fluids Struct.,2014

3. An Experimental Investigation of the Hydrodynamic Damping of Vibrating Hydrofoils;IOP Conf. Ser. Earth Environ. Sci.,2019

4. A Numerical Method for the Determination of Flow-Induced Damping in Hydroelectric Turbines;J. Fluids Struct.,2017

5. Hydrodynamic Damping of a Fluttering Hydrofoil in High-Speed Flows;Int. J. Fluid Mach. Syst.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3