Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
Abstract
Abstract
Function drives many early design considerations in product development, highlighting the importance of finding functionally similar examples if searching for sources of inspiration or evaluating designs against existing technology. However, it is difficult to capture what people consider is functionally similar and therefore, if measures that quantify and compare function using the products themselves are meaningful. In this work, human evaluations of similarity are compared to computationally determined values, shedding light on how quantitative measures align with human perceptions of functional similarity. Human perception of functional similarity is considered at two levels of abstraction: (1) the high-level purpose of a product and (2) how the product works. These human similarity evaluations are quantified by crowdsourcing 1360 triplet ratings at each functional abstraction and creating low-dimensional embeddings from the triplets. The triplets and embeddings are then compared to similarities that are computed between functional models using six representative measures, including both matching measures (e.g., cosine similarity) and network-based measures (e.g., spectral distance). The outcomes demonstrate how levels of abstraction and the fuzzy line between “highly similar” and “somewhat similar” products may impact human functional similarity representations and their subsequent alignment with computed similarity. The results inform how functional similarity can be leveraged by designers, with applications in creativity support tools, such as those used for design-by-analogy, or other computational methods in design that incorporate product function.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献