Identification and Observability Measure of a Basis Set of Error Parameters in Robot Calibration

Author:

Menq Chia-Hsiang1,Borm Jin-Hwan1,Lai Jim Z.2

Affiliation:

1. The Ohio State University, Department of Mechanical Engineering, Columbus, OH 43210

2. Allen-Bradley Co., Highland Heights, OH 44143

Abstract

This paper presents a method of identifying a basis set of error parameters in robot calibration using the Singular Value Decomposition (SVD) method. With the method, the error parameter space can be separated into two: observable subspace and unobservable one. As a result, for a defined position error model, one can determine the dimension of the observable subspace, which is vital to the estimation of error parameters. The second objective of this paper is to study, when unmodeled error exists, the implications of measurement configurations in robot calibration. For selecting measurement configurations in calibration, and index is defined to measure the observability of the error parameters with respect to a set of robot configurations. As the observability index increases, the attribution of the position errors to the parameters becomes dominant and the effects of the measurement and unmodeled errors become less significant; consequently better estimation of the parameter errors can be obtained.

Publisher

ASME International

Subject

General Engineering

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calibration strategies for enhancing accuracy in serial industrial robots for orbital milling applications;Industrial Robot: the international journal of robotics research and application;2024-03-15

2. A study of the optimal poses based calibration method for kinematic parameters of Stewart robot;2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON);2023-12-08

3. Study on Automated Heat Treatment for Car-body Mold Using an Articulated Robot System;Journal of the Korean Society for Precision Engineering;2023-12-01

4. Automated measurement and hybrid adaptive identification method for kinematic calibration of hybrid machine tools;Measurement;2023-11

5. Joint space-based measurement configurations selection for the kinematic calibration of Stewart platforms *;2023 IEEE International Conference on Real-time Computing and Robotics (RCAR);2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3