Thermal Radiative Transport in Dense Absorbing and Scattering Nano and Micro Particulate Media

Author:

Prasher Ravi1

Affiliation:

1. Arizona State University

Abstract

Dispersion relation (relation between frequency and wave vector) for electromagnetic wave is obtained in dense (high volume fraction of particulates) nano/micro particulate media using effective field approximation (EFA) and quasi crystalline approximation (QCA) with Percus-Yevick distribution function. This work is the extension of the previous work by the author where absorption was assumed to be negligible (Prasher, R.S., 2005, J. Heat Transfer, Vol. 127, pp. 903-910). The particulates are both scattering and absorbing. Nano/micro particles are considered due to their promise for future applications such as nanofluids and also for current technologies such as fluidized and packed beds combustors. Only Rayleigh regime is investigated which is a good approximation for nano and micro particles assuming that the photon wavelength is much larger than the size of nano and micro particles. Comparison of photon velocity and effective attenuation based on EFA and QCA are made. Results show that heat flux and temperature predictions made by models in the literature for multiple and dependent scattering and absorption are not very accurate as these models do not take the modification of equilibrium emissive power due to the modification of photon velocity into account.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3