Neural-Network Based On-Line Adaptation of Model Predictive Controller for Dynamic Systems With Uncertain Behavior

Author:

Sanjuan Marco E.1

Affiliation:

1. Universidad del Norte

Abstract

Model-based controllers have positioned themselves in industrial applications, working mainly on top of a layer of PID controllers. Their implementation takes an important amount of time because of the required PID tuning and the model characterization/identification. This paper presents a strategy to perform on-line adaptation for the dynamic matrix coefficients in a DMC controller. Based on the observed PH (Prediction Horizon) elements of the response and controller signal vectors, and based on a non-residing control horizon controller design, the direct control problem is reformulated using the full-effect dynamic matrix (PHxPH) as an unknown. Data is collected and used in two directions: training a RAWN Network (Random Allocation Weight Neural Network), to describe recently observed process behavior, and to solve a least-squares problem for a set of linear equations where the unknowns are the characteristic response coefficients. The paper presents the effect of both approaches, illustrating the adaptation algorithms operation in a highly nonlinear process where the controller is designed in a low-gain region. Then the process operating condition is shifted so that it moves to a high-gain region to observe controller response.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3