Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model

Author:

Pukrushpan Jay T.1,Peng Huei1,Stefanopoulou Anna G.1

Affiliation:

1. University of Michigan, Ann Arbor, MI

Abstract

Fuel cell stack systems are under intensive development by several manufacturers since they complement heat engines and reduce the ubiquitous dependence on fossil fuels and thus have significant environmental and national security implications. To compete with ICE engines, however, fuel cell system must operate and function at least as well as conventional engines. Transient behavior is on of the key requirements for the success of fuel cell vehicles. The fuel cell system power response depends on the air and hydrogen feed, flow and pressure regulation, and heat and water management. During transient, the fuel cell stack control system is required to maintain optimal temperature, membrane hydration, and partial pressure of the reactants across the membrane in order to avoid degradation of the stack voltage, and thus, efficiency reduction. In this paper, we developed a fuel cell system dynamic model suitable for control study. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the manifold filling dynamics (both anode and cathode), and consequently, the time-evolving reactant partial pressures, and membrane humidity. The effects of varying oxygen concentration and membrane humidity on the fuel cell voltage were included. Simulation results are presented to demonstrate the model capability.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3