Numerical Modeling of Radiative Heat Transfer in Pool Fire Simulations

Author:

Krishnamoorthy G.1,Borodai S.1,Rawat R.2,Spinti J.1,Smith P. J.1

Affiliation:

1. University of Utah

2. CD-adapco

Abstract

Different approaches to modeling radiative heat transfer in Large Eddy Simulations (LES) of a 38 cm diameter methane pool fire are compared. The P-1 radiation model and the discrete ordinates method are spatially decomposed to solve the radiative transport equation (RTE) on parallel computers. The radiative properties are obtained in the form of mean absorption coefficients from total emissivity data or of spectral absorption coefficients extracted from a narrow band model (RADCAL). The predictions are compared with experimental data. The different approaches are able to predict total radiative heat loss fractions with only a moderate loss of accuracy. However, only the discrete ordinates method is able to qualitatively predict the distributions of the radiative heat flux vectors in regions away from the fire. Results obtained from the calculations performed with the gray property model are very close to those obtained with non-gray calculations. Employing the P-1 radiation model with the gray property model provides adequate coupling between the hydrodynamics and radiative heat transfer while decreasing computational time by about 20% compared to the discrete ordinates method in moderate size grids. The computational savings associated with the P-1 model can become significant in LES calculations that are performed on large computational grids (employing hundreds to thousands of processors) to resolve structures on the scale of the pool diameter. Such resolution is necessary to capture both the large structures on the scale of the pool fire and the smaller regions of air engulfments and visible flame structures that are pivotal to characterizing soot location and temperature.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3