Modeling of the Concurrent Gas-Liquid Trickling Flow Through a Packed-Bed Reactor to Predict Interfacial Area

Author:

Jo Daeseong1,Olenik Hayden C.1,Revankar S. T.1

Affiliation:

1. Purdue University

Abstract

A wavy annular flow model in a packed-bed is developed by introducing the shape of waves in a thin liquid film to predict the local interfacial area. The trickling flow regime in a packed-bed is often approximated by an annular flow through a narrow circular channel in which the continuous gas and liquid are completely separated by a smooth and stable interface. Most of the existing models for the trickling flow utilize balance equations for each phase to predict hydrodynamics parameters: liquid hold-up, interstitial velocities, pressure drop, or void fraction. However, the smooth and stable annular flow may not result in an accurate prediction of the interfacial area between gas-liquid phases in a packed-bed. Therefore, a wavy annular flow model is introduced to predict the more accurate interfacial area. This is important because the transport of mass, momentum, and energy is proportional to the interfacial area between gas and liquid phase. Because of the annular flow model, the ratio of film thickness to the equivalent channel diameter can be expressed as a function of only void fraction. The two-parallel wire probe allowed to measure the local film thickness has been used to obtain the shape of the interface. By integrating the local interfacial areas over a certain time period, the local interfacial area is evaluated. The interfacial areas predicted by the presented model are comparable with the empirical correlations developed in the past decades.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3