Computational Simulation on Thermal Aspect of Micro-Fabrication Process for MEMS Device

Author:

Yee Raymond K.1,Chan Gabriel C.1

Affiliation:

1. San Jose State University

Abstract

The inherent residual stresses and strains from micro fabrication process can have profound effects on the functionality and reliability of MEMS devices. Surface micromachining fabrication involves a series of sequential steps of addition and subtraction of materials through deposition and etching techniques. For instance, when a typical micro cantilever beam is fabricated, layers of silicon dioxide and polysilicon structures are deposited on top of silicon substrate. Part of the silicon dioxide layer is chemically etched out before the deposition of polysilicon layer. Due to mismatch of coefficients of thermal expansion (CTE) in layered structure, thermal cycle loading during micromachining fabrication can induce significant residual stress within a part from thermal aspect alone. Computational method is used to simulate the micromachining fabrication process for MEMS and to predict the residual stresses/strains in a selected MEMS device. The focus of the study is on the thermal aspect of deposition and etching processes during micromachining. Particular attention is placed on the effects of deposition temperature and polysilicon film thickness on resulting residual stresses.

Publisher

ASMEDC

Reference12 articles.

1. Hsu, T.R., MEMS & Microsystems: Design and Manufacture, McGraw-Hill, Boston, MA, 2001.

2. Starman, L.A. Jr, Ochoa, E.M., & Lott, J.A. Residual Stress Characterization in MEMS Microbridges using Micro-Raman Spectroscopy, Modeling and Simulation of Microsystems 2002.

3. Kahn, H., et al., Mechanical Properties of Thick, Surface Micromachined Polysilicon Films, IEEE, 1996.

4. French, P.J., Sarro, P.M., and Mallee, R., Optimization of a low stress silicon nitride process for surface micromachining applications, Elsevier Science, 1997.

5. Teixeira, R.C., Doi, I., & Zakia, M.B.P., Micro-Raman Stress Characterization of Polycrystalline, Elsevier Science, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3