Constructing a Design Knowledge Base Using Natural Language Processing

Author:

Sundararajan V.1

Affiliation:

1. University of california at Riverside

Abstract

Mechanical engineering, like other engineering disciplines, has witnessed maturation of various aspects of its domain, obsolescence of some areas and a resurgence of others. With a history of over 200 years of continuous research and development, both in academia and industry, the community has generated enormous amounts of design knowledge in the form of texts, articles and design drawings. With the advent of electronics and computer science, several of the classical mechanisms faced obsolescence, but with the emergence of MEMS and nanotechnology, the same designs are facing a resurrection. Research and development in mechanical engineering would derive enormous benefit from a structured knowledge-base of designs and mechanisms. This paper describes a prototype system that synthesizes a knowledge-base of mechanical designs by the processing of the text in engineering descriptions. The goal is to construct a system that stores and catalogs engineering designs, their sub-assemblies and their super-assemblies for the purposes of archiving, retrieval for launching new designs and for education of engineering design. Engineering texts have a relatively clear discourse structure with fewer ambiguities, less stylistic variations and less use of complex figures of speech. The text is first passed through a part-of-speech tagger. The concept of thematic roles is used to link different parts of the sentence. The discourse structure is then taken into account by anaphora resolution. The knowledge is gradually built up through progressive scanning and analysis of text. References, interconnections and attributes are added or deleted based upon the nature, reliability and strength of the new information. Examples of analysis and resulting knowledge structures are presented.

Publisher

ASMEDC

Reference16 articles.

1. Weiss S., Indurkhya N., Zhang T., Damerau F., Text Mining: Predictive Methods for Analyzing Unstructured Information

2. Chen Hsinchun , ChungWingyan, XuJennifer Jie, WangGang, QinYi, ChauMichael, Crime Data Mining: A General Framework and Some Examples, Computer, Vol. 37, no. 4, pp. 50–56, Apr., 2004

3. Castellanos, M., HotMiner: Discovering Hot Topics from Dirty Text, in Survey of Text Mining, Clustering, Classification and Retrieval, ed. Michael Berry, Springer, 2004.

4. Ananiadou, S., McNaught J., Text Mining for Biology and Biomedicine, Artech House, 2006

5. http://www.nlm.nih.gov/research/umls/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3