A Fracture Mechanics Approach to the Prediction of Tool Wear in Dry High Speed Machining of Aluminum Cast Alloys: Part 1 — Model Development

Author:

Bardetsky Alexander1,Attia Helmi2,Elbestawi Mohamed1

Affiliation:

1. McMaster University

2. National Research Council of Canada

Abstract

The analysis of the mechanism of cutting tool wear in high speed machining of cast aluminum alloys is conducted in this research work. The result of analysis indicates that the interaction between the hard silicon constituencies of the alloy and the surface of the cutting tool is the most detrimental to tool life. The wear of the cutting tool in such interactions, governed by fatigue wear mechanism, is directly proportional to silicon content of the alloy, silicon grain size and to the tool’s loading conditions. In order to predict the tool wear in machining aluminum cast alloys, a new wear model is developed. The fracture mechanics approach in wear rate estimation is implemented in this model. As an input data for the tool wear modeling, the normal and tangential stresses, acting on the flank of cutting tool are used. The fracture mechanics analysis of the subsurface crack propagation in the cobalt binder of cemented carbide cutting tool material is performed using a finite element (FE) model of the tool-workpiece sliding contact. The real microstructure of cemented carbide is incorporated in the FE model of tool-workpiece contact, and elastic-plastic properties of cobalt, defined by continuum theory of crystal plasticity are introduced in the model by UMAT subroutine of the ABAQUS® FE software. The crack propagation rate, determined from FE modeling, is used then in the model of cutting tool wear, developed in this work. This model is capable to predict the wear rate of cutting tool, base on the microstructural characteristics of the cutting tool and workpiece material and the tool’s loading conditions. The model can be used for cutting tool life assessment and management in high speed machining of Al-Si alloys in an industrial setting.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3