Shock Reduction for Electronic Components Within a Projectile

Author:

Chakka Vinod1,Trabia Mohamed B.1,O'Toole Brendan1,Sridharala Srujanbabu1,Ladkany Samaan1,Chowdhury Mostafiz2

Affiliation:

1. University of Nevada at Las Vegas

2. U.S. Army Research Laboratory

Abstract

Electronic components within a projectile are subjected to severe loads over extremely short duration. Failure of these components is likely to have negative implications to the projectile or mission. While experimental data can be helpful in understanding the failure phenomena, collecting such data is usually difficult. There are also limitations on the reliability of sensors under these circumstances. Finite element modeling (FEM) can offer a means to better understand the behavior of these components. It can also be used to design better techniques to mitigate the shocks these components are subjected to. A model of a typical projectile and the gun barrel is presented. The projectile is modified to include a payload of a one-pound mass that represents a typical electronic package, which is supported by a plate. The model, which is subjected to a realistic launch pressure-time history, includes the effects of friction between the gun barrel inner surface and the projectile. The effect of the flexibility of the gun barrel on the vibrations of the electronic package is also considered. This paper proposes using a composite plate, with carbon fibers embedded in an epoxy matrix, to reduce the shocks transmitted to the payload. A parametric study of the effects of varying the thickness of the supporting plate and the fiber volume fraction on accelerations and stresses is included.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3