Affiliation:
1. National Research Council Canada
Abstract
Investigation of the effect of oxygen addition to fuel on the visible flame appearance and soot formation characteristics of laminar diffusion flames is important to gain comprehensive understanding of gas-phase combustion chemistry and its interaction with soot chemistry. This paper reports experimental results of oxygen addition to fuel on the visible flame height and soot volume fraction distributions in axisymmetric coflow laminar ethylene and propane diffusion flames at atmospheric flames. The carbon flow rate was maintained constant in all the experiments. Although many experimental studies have been conducted in the literature in this topic, the present investigation aimed at providing spatially resolved soot volume fraction distributions over the entire range of oxygen addition from no oxygen addition up to the point of flashback while keeping the carbon mass flow rate constant. The level of oxygen added to fuel right before flashback is about 45% (the percentage of oxygen addition is always by volume in this study) of the fuel flow rate in the ethylene flame and 300% of the fuel flow rate in the propane flame. As the added oxygen amount to ethylene increases, the visible flame height first increases. When the added oxygen flow rate is about 13% of the fuel flow rate, the flame becomes smoking, i.e., soot escapes from the flame tip. When the oxygen flow rate reaches about 42% of the fuel flow rate, the flame stops smoking. When oxygen was added to propane, the visible flame height linearly decreases with increasing the amount of oxygen. These very different effects of oxygen addition to ethylene and propane indicate that oxygen plays a drastically different role in the chemical pathways leading to soot formation in ethylene and propane flames. Distributions of soot volume fractions in these flames were measured using a 2D light attenuation technique coupled with the Abel inversion. The present study provides valuable experimental data for validating soot models.