Experimental Investigation of Oxygen Addition to Fuel on Soot Formation in Laminar Coflow Diffusion Flames of Ethylene and Propane

Author:

Liu Fengshan1,Thomson Kevin A.1,Smallwood Gregory J.1

Affiliation:

1. National Research Council Canada

Abstract

Investigation of the effect of oxygen addition to fuel on the visible flame appearance and soot formation characteristics of laminar diffusion flames is important to gain comprehensive understanding of gas-phase combustion chemistry and its interaction with soot chemistry. This paper reports experimental results of oxygen addition to fuel on the visible flame height and soot volume fraction distributions in axisymmetric coflow laminar ethylene and propane diffusion flames at atmospheric flames. The carbon flow rate was maintained constant in all the experiments. Although many experimental studies have been conducted in the literature in this topic, the present investigation aimed at providing spatially resolved soot volume fraction distributions over the entire range of oxygen addition from no oxygen addition up to the point of flashback while keeping the carbon mass flow rate constant. The level of oxygen added to fuel right before flashback is about 45% (the percentage of oxygen addition is always by volume in this study) of the fuel flow rate in the ethylene flame and 300% of the fuel flow rate in the propane flame. As the added oxygen amount to ethylene increases, the visible flame height first increases. When the added oxygen flow rate is about 13% of the fuel flow rate, the flame becomes smoking, i.e., soot escapes from the flame tip. When the oxygen flow rate reaches about 42% of the fuel flow rate, the flame stops smoking. When oxygen was added to propane, the visible flame height linearly decreases with increasing the amount of oxygen. These very different effects of oxygen addition to ethylene and propane indicate that oxygen plays a drastically different role in the chemical pathways leading to soot formation in ethylene and propane flames. Distributions of soot volume fractions in these flames were measured using a 2D light attenuation technique coupled with the Abel inversion. The present study provides valuable experimental data for validating soot models.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3