MIMO-FEA Active Vibration Suppression of a Satellite Using an Adaptive Composite Thruster Platform

Author:

Ghasemi-Nejhad Mehrdad N.1,Antin Nicolas1

Affiliation:

1. University of Hawaii at Manoa

Abstract

Adaptive or intelligent structures which have the capability for sensing and responding to their environment promise a novel approach to satisfying the stringent performance requirements of future space missions. This research focuses on a finite element analysis (FEA) multi-input-multi-output (MIMO) approach for vibration suppression and precision position control of a satellite thruster and its structure, due to the thruster-firing, employing an intelligent composite thruster platform. This smart platform connects the thruster to the structure of the satellite and has three active struts and one active central support with piezoelectric stacks as actuators, and each has a sensor at its base. It also has an active circular composite plate as the top device plate with nine embedded piezoelectric patches that six of them are back-to-back and function as three actuators pairs and three of them are placed next to the bottom actuators and function as sensors. Here, the predominant modes of the structure are first determined. In the FEA method, a finite element harmonic analysis was employed to develop a vibration suppression scheme, which was then used to study the vibration control of the satellite structure using the vibration suppression capabilities of the intelligent platform mounted on the satellite. In this approach, the responses of the structure to a unit external force as well as unit internal piezoelectric control voltages are first determined, individually. The responses are then assembled in a system of equation as a coupled system and then solved simultaneously to determine the control voltages and their respective phases for the system actuators for a given external disturbance. Next, this technique was applied to the vibration suppression of the satellite frame as well as its thruster simultaneously as a coupled problem and the results are discussed. This approach is an effective technique for the design of smart structures with complex geometry to study their active vibration suppression capabilities and effectiveness. The entire system has ten actuators: four piezoelectric stack actuators and three pairs of piezoelectric patch actuators.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3