Thermal Fatigue Life Prediction Model of CCGA Tin-Lead and Lead-Free Interconnects

Author:

Wong T. E.1,Chu C.1

Affiliation:

1. Raytheon Space and Airborne Systems

Abstract

A thermal fatigue life prediction model of a ceramic column grid array (CCGA) solder joint assembly has been developed when the 90Pb/10Sn solder columns of the CCGA package are soldered onto the printed circuit board with either tin-lead or lead-free solder paste. This model was evolved from an empirically derived formula by correlating the solder nonelastic strain energy density increment to the fatigue life test data. To develop the solder joint fatigue life prediction model, a nonlinear finite element analysis (FEA) was conducted using the ABAQUS computer code. A thermal fatigue life prediction model was then established. The test results, obtained from various sources in which tin-lead and lead-free solder pastes on PCB were used, combined with the FEA derived nonelastic strain energy density per temperature cycle, ΔW, were used to calibrate the proposed life prediction model. In the analysis, 3-D finite element global- and sub-modeling techniques were used to determine the ΔW of the CCGA solder joints when subjected to temperature cycling. The analysis results show that: 1) solder joint would typically fail across solder column instead of along solder pad interfaces; and 2) higher nonelastic strain energy densities of solder occur at the solder columns at the package corners and these solder joints would fail first. These analysis predictions are consistent with the test observations. In the model calibration process, the 625- and 1657-pin CCGA test results, which were cycled between 20°C/90°C, 0°C/100°C, -55°C/110°C, or -55°C/125°C, were reasonably well correlated to the predicted values of ΔW. Therefore, the developed life prediction model could be used and is recommended to serve as an effective tool to determine the integrity of the CCGA solder joints during temperature cycling. In addition, the following future work is recommended: 1) selecting more study cases with various solder joint configurations, package sizes, environmental profiles, etc. to further calibrate this life prediction model; 2) using this model to conduct parametric studies to identify critical factors impacting solder joint fatigue life and then seek an optimum design; and 3) developing a simplified method instead of the FEA approach to make preliminary thermal fatigue life estimates of the CCGA solder joints.

Publisher

ASMEDC

Reference36 articles.

1. ABAQUS, Inc., 2005, ABAQUS Theory and User’s Manuals, Version 6.5.

2. Agarwala, B.N., 1985, “Thermal Fatigue Damage in Pb-In Solder Interconnections,” Proc. International Reliability Physics Symposium, pp. 198–205.

3. Akay, H.U, H. Zhang and N.H. Paydar, 1997, “Experimental Correlations of an Energy-Based Fatigue Life Prediction Method for Solder Joints,” Advances in Electronic Packaging, EEP-Vol. 19-2, ed. by Suhir et al, pp. 1567–1574.

4. ASM International, 1979, Electronic Materials Handbook, Volume 1, Packaging, Materials Park, Ohio.

5. Darveaux, R., K. Banerji, 1991, “Fatigue Analysis of Flip Chip Assemblies Using Thermal Stress Simulations and a Coffin-Manson Relation,” Proc. of 41st ECTC, IEEE, pp. 797–805.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of thermal fatigue life of a turbine nozzle guide vane;Journal of Zhejiang University-SCIENCE A;2011-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3