Affiliation:
1. Southern Illinois University
Abstract
A refractory composite for a high temperature application was studied at various length scales, and its effective thermo-mechanical properties were computed. The analysis considered a micro-scale model made of a representative carbon fiber, a matrix layer, and a coating layer. The model included weak tangential bonding of the intra-layer of the matrix material in order to reduce the thermal stress occurring in the coating material caused by mismatch of coefficients of thermal expansions. In addition, unit-cell models for a 3-D braided composite and a plane-weave composite were also studied. The modeling technique developed in this study can be used as a design tool for an optimal refractory composite for a given application.