Transient Analysis of the Thermal and Hydraulic Behavior of a Cooling Fluid in a Bayonet Tube

Author:

Luna J. M.1,Hernandez-Guerrero S.1,Rubio-Arana C.1,Chavez R. H.2

Affiliation:

1. Universidad de Guanajuato

2. Instituto Nacional de Investigaciones Nucleares

Abstract

Analysis of forced convection in transient fluid flows have recently gathered attention due to the development of automatic control devices for precision control of the fluid flow in heat transfer devices of high efficiency. The precise regulation of the fluid flow is very important when the control of heat exchangers has to be assured, thus requiring a better understanding and a precise evaluation of the transient heat behavior. With few exceptions, the calculus methods for the heat exchangers devices are based on the flow patterns using considerations that could be apart from reality and restricted to stationary state conditions. These methods give little information on the possible variations due to the fluid flow changes and temperature distribution that arise due to thermal stresses. This paper deals with the details of a numerical approach to describe the transient hydrodynamic and thermal behavior in a bayonet tube with a fixed geometry using water as the working fluid. The results are reported as a function of the dimensionless Reynolds, Euler and Nusselt numbers. For each zone of the bayonet tube the time required for the fluid flow to be hydro and thermally developed is determined. The effect of the hydrodynamic flow changes on the heat flow local distribution is discussed. For a given Reynolds number a separation vortex is detected in the returning zone and it changes its position as time elapses. It is found that as time approaches the steady state the heat transfer becomes more stable throughout the bayonet.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3