On-Line Remaining Life Assessment of Hot Reheat Pipe Bend

Author:

Dutta B. K.1,Guin S.1,Samal M. K.1

Affiliation:

1. Bhabha Atomic Research Centre

Abstract

An ageing in-service Hot Reheat (HRH) pipe bend before Intermediate Pressure (IP) Stop/ Control Valve of a Utility was identified for real-time creep-fatigue damage assessment. A data acquisition system has been installed to record thermal hydraulic parameters, such as pressure, temperature and flow on real time basis. The HRH piping including low pressure bypass line incorporating various supports such as directional restraints, constant weight hangers and spring hangers, was modeled using straight and bend elements. Static stress analysis was performed to find out the forces and moments at either ends of the pipe-bend for sustained and expansion loadings using piping analysis program CAESAR-II. A detailed 3-D Finite Element Model of the pipe bend was also developed using 20-noded brick elements. The 3-D FE model along with material parameters and loading are used by code BOSSES for on-line monitoring of damage. The nodal temperatures (obtained by temperature transient analysis), recorded internal pressure, associated piping loads, etc. are then used in a stress analysis module to calculate stresses at different gauss points of the pipe bend. The temperatures and stresses at different time are then used to compute fatigue and creep damage and to assess growth of different postulated cracks at various locations of pipe bend, as well as remaining life. All the information are upgraded and restart files are saved for successive computation. The real-time process data of the pipe bend are made available to the Researcher’s Desk through Client-Server Network.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3