Multi-Axial Homogenized Energy Model for Ferroelectric Materials

Author:

Oates William S.1,Smith Ralph C.1

Affiliation:

1. North Carolina State University

Abstract

A multi-axial homogenized energy model is developed to account for nonlinear and hysteretic ferroelectric constitutive behavior induced by multi-axial electric field loading. The modeling approach extends a one-dimensional multi-scale modeling framework developed for ferroic materials [1, 2]. A three-dimensional energy function is introduced at the mesoscopic length scale and subsequently approximated as piecewise polynomial approximations to improve computational efficiency. Multi-scale field relations are then developed by introducing a distribution of effective electric fields and coercive fields that govern the nucleation of localized domain switching in polycrystalline ferroelectric materials. The distribution of field relations is used to relate the localized domain switching processes to observed macroscopic behavior by utilizing a stochastic homogenization technique. It is demonstrated that a simplified stochastic distribution of effective fields and coercive fields is sufficient to predict multi-axial ferroelectric switching in ferroelectric ceramics. Examples are given to validate the model in comparison to multi-axial loading experiments given in the literature. The model reduction provides a simple and efficient multi-scale modeling approach that is important for developing reliable piezoelectric actuator systems as well as implementation in model-based control of two and three dimensional structures.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3