A Systematic Approach for Optimal Mounting System Design of Truck Body

Author:

Jiang Dongying1,Cui Yushun1,Ma Zheng-Dong2,Hadi Rod3

Affiliation:

1. MKP Structural Design Associates, Inc.

2. University of Michigan

3. Vibroacoustics North America

Abstract

Body mount system is utilized for isolating dynamic load and vibration into the cab from the rest of vehicle system. The behavior of the mount system not only depends on the performance of individual mounts but also on the complete system configuration. A systematic approach is proposed for optimal design of the truck body mount system. Design variables include the mount locations and mechanical properties of each individual mount. First, an advanced component mode-based substructuring method is utilized for developing reduced-order models of the cab body and the other related subsystems, such as the chassis frame, from the original detailed finite element models. An optimization procedure is then developed, which can be used to determine the geometric distribution of the mounts and their mechanical characteristics (e.g., dynamic stiffness and damping) for minimizing vibration amplitudes at the given locations in the body structure over a frequency range of interest. To determine the optimal mount distribution, a path variable is introduced at the interface of cab and frame, which allows each individual mount moving along the chassis frame in the permitted range. The optimal mount location design problem is thus transformed to an equivalent problem that determines the optimal path variables of each mount. MATLAB codes are developed for the mount system design problem. An example mount system design is given to illustrate the effectiveness and efficiency of the proposed approach, in which the mount stiffness and the mount locations are optimized simultaneously. The developed optimization tool can be extended for optimizing other general mounting systems, such as an engine mount system.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3