An Experimental and Theoretical Study of Quasi-Static Behavior of Double-Helical Gear Sets

Author:

Kang M.R.1,Kahraman A.2

Affiliation:

1. Department of Defense Science and Technology, Gwangju University, Gwangju, Jeollanam-do 61743, South Korea

2. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210

Abstract

Abstract The quasi-static behaviors of a double-helical gear pair is investigated both experimentally and theoretically with the main focus on the influence of the key design and manufacturing parameters associated with double-helical gears, including nominal right-to-left stagger angle, the stagger angle deviation (error) from the nominal stagger angle, and axial gear supporting conditions. On the experimental side, a double-helical gear test setup proposed earlier (Kang, M. R., and Kahraman, A., 2015, “An Experimental and Theoretical Study of Dynamic Behavior of Double-Helical Gear Sets,” J. Sound Vib., 350, pp. 11–29). for studying dynamics of the same system is employed that allows adjustable right-to-left stagger angles, intentional stagger errors, and axial support conditions. Specific measurement systems are developed and implemented simultaneously to measure the static motion transmission error and axial motions of the gears under low-speed conditions, as well as gear root strains to determine right-to-left load-sharing factors. A test matrix that covers wide ranges of stagger angles, intentional stagger error, and axial support conditions is executed within a range of torque transmitted to establish an extensive database. On the modeling side, the measured quasi-static behavior of double-helical gear pairs is simulated by using an existing quasi-static double-helical load distribution model (Thomas, J., and Houser, D. R., 1992, “A Procedure for Predicting the Load Distribution and Transmission Error Characteristics of Double Helical Gears,” World Congress-Gear and Power Transmission, The 3rd World Congress—Gear and Power Transmission, Paris.). Direct comparison of the measurements and predictions of loaded static transmission error, axial play, root stresses, and right-to-left load-sharing factors are used to validate the quasi-static model as well as describing the measured behavior.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference25 articles.

1. Effect of Axial Vibrations on the Dynamics of a Helical Gear Pair;Kahraman;ASME J. Vib. Acoust.,1993

2. Dynamic Analysis of a Multi-Mesh Helical Gear Train;Kahraman;ASME J. Mech. Des.,1994

3. Experimental Investigation on Modal Behavior of a Helical Gear Units With Various Ratio;Umezawa,1996

4. Dynamic Analysis of a Multi-shaft Helical Gear Transmission by Finite Elements: Model and Experiment;Kubur;ASME J. Vib. Acoust.,2004

5. Static and Dynamic Transmission Error Measurements of Helical Gear Pairs With Various Tooth Modifications;Benatar;ASME J. Mech. Des.,2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3