Galerkin Scheme-Based Determination of Survival Probability of Oscillators With Fractional Derivative Elements

Author:

Spanos Pol D.1,Di Matteo Alberto2,Cheng Yezeng3,Pirrotta Antonina2,Li Jie4

Affiliation:

1. Honorary Mem. ASME L.B. Ryon Chair in Engineering Department of Mechanical Engineering and Materials Science, Rice University, 6100 Main Street, Houston, TX 77005-1827 e-mail:

2. Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Università degli Studi di Palermo, Viale delle Scienze, Palermo 90128, Italy e-mail:

3. Department of Mechanical Engineering and Materials Science, Rice University, 6100 Main Street, Houston, TX 77005-1827 e-mail:

4. School of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China e-mail:

Abstract

In this paper, an approximate semi-analytical approach is developed for determining the first-passage probability of randomly excited linear and lightly nonlinear oscillators endowed with fractional derivative elements. The amplitude of the system response is modeled as one-dimensional Markovian process by employing a combination of the stochastic averaging and the statistical linearization techniques. This leads to a backward Kolmogorov equation which governs the evolution of the survival probability of the oscillator. Next, an approximate solution of this equation is sought by resorting to a Galerkin scheme. Specifically, a convenient set of confluent hypergeometric functions, related to the corresponding linear oscillator with integer-order derivatives, is used as orthogonal basis for this scheme. Applications to the standard viscous linear and to nonlinear (Van der Pol and Duffing) oscillators are presented. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of the proposed approximate analytical solution.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3