Dynamic Effects of Mandrel/Tubular Interaction on Downhole Solid Tubular Expansion in Well Engineering

Author:

Seibi A. C.1,Karrech A.1,Pervez T.2,Al-Hiddabi S.2,Al-Yahmadi A.2,Al-Shabibi A.2

Affiliation:

1. Department of Mechanical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi, UAE

2. Department of Mechanical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123, Oman

Abstract

The expansion process subjects a solid tubular to large plastic deformations leading to variations in tubular thickness and length, which may result in premature and unexpected failures. It was noticed that the expansion process induces wall thickness imperfections due to excessive local plastic deformation as a result of mandrel sticking and slipping relative to the expanded tubular; such irregularities increase the probability of failure. Mandrel sticking may be the result of lack of enough lubrication, tubular surface irregularities, and the presence of welded and/or threaded connections, which require higher drawing force to push the mandrel forward. When the drawing force required to overcoming the maximum static friction and the mandrel forward motion is assured, the mandrel slips relative to the expanded tubular. This “stick-slip” phenomenon results in mandrel oscillations that affect the tubular response in terms of further reduction in thickness and may jeopardize the tubular capacity under normal operating field conditions. Therefore, the present work studies the mandrel dynamics and their effect on the tubular structural response. A mathematical model, which is an extension of the quasistatic tubular expansion analysis, has been developed to describe the dynamic friction effects of the stick-slip phenomenon. A special case of tubular expansion consisting of 25% expansion ratio of a 4/12 in. (114.3 mm) liner hanger was considered. It was found that the level of mandrel oscillations is in the order of 1–2 mm around its equilibrium position resulting in tubular thickness reduction of approximately 9% on top of its variation caused by the steady state expansion process. This increase in thickness reduction may affect the postexpansion collapse strength of the tubular.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference17 articles.

1. Using Expandable Solid Tubular to Solve Well Construction Challenges in Deep Waters and Maturing Properties;Bullock

2. Trial of an Expandable Sand Screen to Replace Internal Gravel Packing;van Buren

3. Stress Analysis of Casings Expansion/Post-Expansion: Theoretical Approach;Al-Hiddabi

4. Expandable Wellbore Tubulars;Stewart

5. Expandable Tubular Solution;Filippov

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3