Cardiac Magnetic Resonance Imaging of Mechanical Cavopulmonary Assistance

Author:

Chopski Steven G.1,Whitehead Kevin2,Englehardt George J.2,Throckmorton Amy1

Affiliation:

1. School of Biomedical Engineering, Science and Health Systems, Bossone Research Enterprise Center, Drexel University, 3141 Chestnut Street, Room 718, Philadelphia, PA 19104 e-mail:

2. Division of Cardiology and Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 e-mail:

Abstract

Mechanical circulatory support (MCS) options are limited for patients with dysfunctional single ventricle physiology. To address this unmet clinical need, we are developing an axial-flow blood pump to provide mechanical assistance to the cavopulmonary circulation. In this study, we investigate the use of high-resolution cardiac magnetic resonance imaging (MRI) to visualize the complex fluid flow conditions of mechanical circulatory assist in two patient-specific Fontan anatomies. A three-bladed axial-flow impeller coupled to a supportive cage with a four-bladed diffuser was positioned in the inferior vena cava (IVC) of each Fontan anatomy. Cardiac magnetic resonance (CMR) imaging and power efficiency studies were conducted at physiologic relevant parameters with cardiac outputs of 2, 3, and 4 L/min with impeller rotational speeds of 2000 and 4000 rpm. The axial-flow impeller was able to generate improved flow in the total cavopulmonary connection (TCPC). The higher rotational speed was able to redistribute flow in the TCPC anastomosis aiding in removing stagnant blood. No retrograde flow was observed or measured in the superior vena cava (SVC). As an extension of the CMR data, a scalar stress analysis was performed on both models and found a maximum scalar stress of approximately 42 Pa for both patient anatomies. The power efficiency experiments demonstrated a maximum energy gain of 8.6 mW for TCPC Anatomy 1 and 12.58 mW for TCPC Anatomy 2 for a flow rate of 4 L/min and at 4000 rpm. These findings support the continued development of axial blood pumps for mechanical cavopulmonary assist.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3