Dynamic Analysis of a High-Pressure Relief Valve During Opening

Author:

Bossard John1,Reich Alton2,DiMeo Alex3

Affiliation:

1. BSRD, LLC Huntsville, AL 35803

2. Streamline Automation, LLC Huntsville, AL 35803

3. Curtiss-Wright Flow Control East, Farmingdale, NY 11735

Abstract

Abstract In nuclear power plants, power actuated pressure relief valves serve several purposes. They act as safety valves and open automatically in response to unusually high pressures in the primary system. They also act as power-operated valves and are used to relieve steam in response to automatic or manually initiated control signals. These valves are required to lift completely over a short duration from the time that they receive an actuation signal, or the system pressure exceeds the set point. This short lift time results in the valve disk moving at high velocities, and can result in high impact forces on the piston and stem when the valve fully opens. To quantitatively evaluate the dynamic performance of the Target Rock Pressure Relief Valve, an analysis effort was undertaken which would accommodate both the fluid dynamic features of the valve operation, as well as the kinematic characteristics of the valve, during pressure relief valve operation. To execute the analysis, the Generalized Fluid System Simulation Program (GFSSP) was used. GFSSP is a network flow solver computational fluid dynamics (CFD) code developed by NASA that has the ability to analyze transient, multiphase flows, and conjugate heat transfer, along with the inclusion of custom user subroutines developed by the user which can accommodate other simulation requirements. In this paper, we present the GFSSP model developed, and the computed results that could be compared with corresponding parameters as measured from experimental testing for the pressure relief valve. Adjustments to GFSSP input parameters allow the anchoring of the GFSSP valve model to test data. This makes it possible to use the GFSSP model as a predictive tool for understanding valve dynamics, as well as evaluating proposed pressure relief valve modifications for performance improvements.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference8 articles.

1. Literature Research in Relevant Fields to Understand Pressure Relief Valve Leak Tightness in a Static Closed State;Procedia Eng.,2015

2. Experimental Research on the Dynamic Instability Characteristic of a Pressure Relief Valve;Adv. Mech. Eng.,2019

3. A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation

4. Numerical Modeling of Fluid Transients by a Finite Volume Procedure for Rocket Propulsion Systems,2003

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3