Virtual Testbed for Economical and Reliability Analysis of Battery Thermal Management Control Strategies

Author:

Olyaei Mostafa1,Singh Sagar1,Jiang Kaiying23,Gurumukhi Yashraj1,Goodson Kenneth2,Asheghi Mehdi2,Miljkovic Nenad1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign , 105 S. Mathews Ave, Urbana, IL 61801

2. Department of Mechanical Engineering, Stanford University , 440 Escondido Mall Building 530, Stanford, CA 94305

3. Stanford University

Abstract

Abstract A virtual testbed simulation framework is created for the economic, reliability, and lifetime analysis of battery thermal management control strategies in electric vehicles (EVs). The system-level model is created in the MATLAB environment using the Simscape library and custom components are developed as required. A lumped parameter coupled electrothermal model with temperature and state of charge (SOC)-dependent cell parameters is adopted from the literature to characterize battery performance. Suitable cell capacity degradation models are implemented to capture the cycle aging and calendar aging of the battery. The economic benefit of extending the lithium iron phosphate (LFP) battery lifetime by optimal thermal conditioning is weighed against the corresponding energy cost of the operation allowing for the assessment and adoption of economy-conscious strategies under different conditions. Active cooling of the battery using a vapor compression system along with a preconditioning strategy is benchmarked against passive cooling by a radiator for operating cost, battery lifetime, and net cost savings. Active cooling with precooling before fast charging can maintain optimal battery temperature but requires an additional electricity cost of 170–530 $/year, compared to passive cooling. However, the added cost is more than compensated for by the increase in battery lifetime by 1.4–1.9 years leading to a net saving of 140–550 $/year.

Funder

Division of Engineering Education and Centers

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3