One-Step Patterned Contact-Resistance-Free Stretchable Strain Sensors With High Linearity and Repeatability for Body-Motion Detection

Author:

Lan Yuqun12,Liu Guodong12,Yin Shizhen12,Zhao Yang32,Liu Chong45,Sun Lijuan12,Li Shuang12,Su Yewang12

Affiliation:

1. Chinese Academy of Sciences State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, , Beijing 100190 , China;

2. University of Chinese Academy of Sciences School of Engineering Science, , Beijing 100049 , China

3. Chinese Academy of Sciences State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, , Beijing 100190 , China ;

4. University of Chinese Academy of Sciences School of Engineering Science, , Beijing 100049 , China;

5. Chinese Academy of Sciences State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, , Beijing 100190 , China

Abstract

AbstractMost of the resistive-type stretchable strain sensors exhibit large sensing ranges and high sensitivity but suboptimal repeatability and linearity because of the contact-resistance mechanism. To achieve high repeatability and linearity, several sensors with contact-resistance-free structures are proposed. However, due to the different geometric layouts of the conductive materials and the insulating substrates, the patterning of these sensors requires multiple processes including photolithography and etching, which may cause high costs and are not suitable for consumer wearable applications. Here, we report a design for stretchable strain sensors based on a one-step patterned contact-resistance-free structure, i.e., the independent-sensing-and-stretchable-function structure (ISSFS). The stretchability mainly comes from the overall large deformation of the wide curved segments (the stretchable parts), while the resistance variation is mainly attributed to the tensile strain of the narrow straight segments (the sensing parts). High linearity (R2 = 0.999) and repeatability (repeatability error = 1.44%) are achieved because neither unstable contact resistance nor nonlinear constitutive and geometric behaviors occur during the sensing process. The conductive materials and the insulating substrates do not need to have different geometric layouts; thus, they can be patterned by only one-step laser cutting. The proposed sensors show great potential in body-motion detection for wearable devices.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tactile sensory response prediction and design using virtual tests;Sensors and Actuators A: Physical;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3