Design of a Novel Locking Ratcheting Mechanism for a Body-Powered Underactuated Hand

Author:

Lee Hun Chan1,Cipra Raymond1

Affiliation:

1. Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47906

Abstract

Abstract As affordable and efficient three-dimensional (3D) printers became widely available, researchers are focusing on developing prosthetic hands that are reasonably priced and effective at the same time. By allowing anyone with a 3D printer to build a body-powered prosthetic hand, many people could build their own prosthetic hand. However, one of the major problems with the current designs is the users must bend and hold their wrist in an awkward position to grasp an object. The primary goal of this work is to present the design process and analysis of a body-powered underactuated prosthetic hand with a novel ratcheting mechanism that locks the finger automatically at a desired position. To estimate how a compliant finger behaves on the actual system with the ratcheting mechanism, the preshaping analysis and the preshaping experiment were conducted. From the experiment, the presence of elastic hysteresis was observed. Additionally, the contact force analysis was performed to see the effects of joint angles and applied tension force. To test how well the hand can grasp, a cup with various weights was lifted and various objects with different shapes were grasped to prove how well the compliant finger can adapt to the shape of the objects. Based on the experiment, the hand had a higher success rate of grasping objects that are lightweight (less than 500 g) and cylindrical or circular shaped.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference24 articles.

1. Literature Review on Needs of Upper Limb Prosthesis Users,2016

2. Toward Dexterous Manipulation With Augmented Adaptive Synergies: The Pisa/IIT SoftHand 2;IEEE Trans. Rob.,2018

3. Grasp and Force Based Taxonomy of Split-Hook Prosthetic Terminal Devices,2014

4. Progress on Stabilizing and Controlling Powered Upper-Limb Prostheses;J. Rehabil. Res. Dev.,2011

5. Underactuated Tendon-Driven Robotic/Prosthetic Hands: Design Issues;Rob. Sci. Syst.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3