Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, Mo. 65401
Abstract
The heat-transfer characteristics of buoyancy-affected laminar and turbulent boundary layers on nonisothermal continuous flat surfaces that move steadily through a quiescent ambient fluid are studied analytically. Both cooling and heating of the continuous plate which is moving upward or downward in a horizontal, vertical, or inclined direction are considered. A mixing length model for the eddy diffusivities of momentum and heat based on an extension of the Van Driest model is employed in the turbulent boundary layers. Numerical results, such as wall shear stress, surface heat-transfer rate, and surface temperature variation, are presented for various Reynolds and Grashof numbers for fluids with a Prandtl number of 0.7, for both laminar and turbulent boundary layers. A good agreement is found between the analytical and experimental results for friction factor in turbulent boundary layer over an isothermal, continuous moving plate.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献