Contact Resistance Measurement and Its Effect on the Thermal Conductivity of Packed Sphere Systems

Author:

Siu W. W. M.1,Lee S. H.-K.1

Affiliation:

1. Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

There has been a growing interest in porous systems with a smaller length-scale modeling requirement on the order of each particle, where the existing tools tend to be inadequate. To address this, a Discrete Conduction Model was recently proposed to allow for the transient temperature calculation of 3D random packed-sphere systems for various microstructures. Since many of the motivating applications involve contacting spheres and since there has been a limited number of contact-resistance studies on spheres undergoing elastic deformation, the objective of this study is to obtain measurements of the contact resistances between metallic spheres in elastic contact, as well as to quantify their influence on the effective thermal conductivity. To accomplish this, an experiment was constructed utilizing air and interfacial resistance to replace the functions of the guard heater and vacuum chamber, and in so doing, enabled transient observations. The overall uncertainty was estimated to be ±6%, and the results were benchmarked against available data. A correlation was obtained relating the contact resistance with the contact radius, and results showed the contact resistance to have minimal transient behavior. The results also showed that the neglect of contact resistance could incur an error in the effective thermal conductivity calculation as large as 800%, and a guideline was presented under which the effect of the contact resistance may be ignored. A correlation accounting for the effect of contact resistance on the effective thermal conductivity was also presented.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiphysics TAN Modeling of Uniaxial Vibration Loaded Pin–Socket Electrical Contact;IEEE Journal on Multiscale and Multiphysics Computational Techniques;2018

2. Major Applications;Mechanical Engineering Series;2013-09-24

3. Cyclic operation of porous combustor-heater (PCH);Fuel;2009-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3