Thermal Characteristics of Microscale Fractal-Like Branching Channels

Author:

Alharbi Ali Y.1,Pence Deborah V.2,Cullion Rebecca N.2

Affiliation:

1. Department of Mechanical Power and Refrigeration, PAAET College of Technological Studies, P.O. Box 42325, Shuwaikh, Kuwait 70654

2. Department of Mechanical Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331-6001

Abstract

Heat transfer through a fractal-like branching flow network is investigated using a three-dimensional computational fluid dynamics approach. Results are used for the purpose of assessing the validity of, and providing insight for improving, assumptions imposed in a previously developed one-dimensional model for predicting wall temperature distributions through fractal-like flow networks. As currently modeled, the one-dimensional code fairly well predicts the general wall temperature trend simulated by the three-dimensional model; hence, demonstrating its suitability as a tool for design of fractal-like flow networks. Due to the asymmetry in the branching flow network, wall temperature distributions for the proposed branching flow network are found to vary with flow path and between the various walls forming the channel network. Three-dimensional temperature distributions along the various walls in the branching channel network are compared to those along a straight channel. Surface temperature distributions on a heat sink with a branching flow network and a heat sink with a series of straight, parallel channels are also analyzed and compared. For the same observed maximum surface temperature on these two heat sinks, a lower temperature variation is noted for the fractal-like heat sink.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3