A Simulation Study on the Dynamic Stability of a Fluid-Conveying Pipe With a Constant Velocity Leakage

Author:

Meng Shuai1,Li Ye2,Wang Xuefeng1

Affiliation:

1. State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

2. State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

Motivated by the fact that a leaking pipe can lose or gain energy from the leaking flow, this study attempts to explore the nonconservative leaking flow effect on the dynamic stability of a simply supported pipe with a constant velocity leakage. It employs a two-dimensional nonlinear longitudinal and lateral coupling model, and the leakage effect is accounted for by virtual work due to virtual momentum transport at the leaking point. The equations of motion are solved by Galerkin-based multimode approach and the Houbolt's finite difference time integration. It demonstrates that when there is a leaking flow, a stable pipe can be refined or destabilized via a static pitchfork bifurcation, and a buckling pipe can be stabilized or deteriorated into a worse divergence condition. The critical leaking flow velocities and the excited buckling modes depend on the leaking fluid mass and the leak's position. This study may provide some insights to assist the leak detection system (LDS) of a pipe transporting high-pressure oil or gas in modern engineering.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3